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ABSTRACT
Shade effects on coffee diseases are ambiguous because they vary depending on the season and
environment. Using Coffee Leaf Rust (CLR) as an example, we demonstrate relationships between
the environment and shading systems and their effects on disease intensity. We characterized
seasonal variations in microclimate and CLR incidence across different altitudes and shading
systems, and integrated effects between the environment, shading systems, microclimate and CLR
into a piecewise structural equation model. The diurnal temperature range was higher in unshaded
systems, but differences decreased with altitude. Humidity related indicators in shaded systems
decreased with altitude. At mid and high altitudes, high CLR incidence occurred in the shading
system showing a low diurnal temperature range and a high dew point temperature. Our study
demonstrates how microclimatic indicators vary as a function of the season, altitude and the coffee
shading system, and how this in turn is related to CLR.
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Introduction

Coffee agroecosystems are interaction networks consisting of
anthropogenic, topographic, meteorological, edaphic and
biological components, which vary in space and time
(Wagenet 1998). The performance of the coffee system with
respect to different ecosystem services is a function of com-
plex space and time-dependent interactions, which can
emerge as trade-offs or synergies (Cerda et al. 2016). Sustain-
able pest and disease management strategies require an
understanding of the complexity of agroecosystems (Avelino
et al. 2006; Cerda et al. 2016).

The performance of coffee, e.g. productivity (Vaast et al.
2006), quality (Bosselmann et al. 2009), biodiversity (Teodoro
et al. 2010) or sustainability (Jha et al. 2011) under shaded vs.
sun-exposed conditions has been explored in numerous
studies. Beneficial shading effects on coffee production
through the mitigation of microclimatic extremes have been
quantified and are generally well-established (Barradas and
Fanjul 1986; Lin 2007). It has also been acknowledged that
the extent to which shaded systems are advantageous depends
on the biophysical context (Cerda et al. 2017; Rahn et al.
2018).

Since shading effects vary across sites and season, its
impacts on coffee pests and diseases are ambiguous (Avelino
et al. 2006, 2011; López-Bravo et al. 2012; Boudrot et al. 2016).
Few studies were conducted across different temporal and
spatial scales or focused on the effect of multiple factors
and response variables. With the availability of both spatial
data and statistical tools to evaluate networks of causal
relationships (Grace 2006; Lefcheck 2016), recent research

addresses the complexity of agroecosystems (Boreux et al.
2013; Allinne et al. 2016).

Shading modifies the environment for pests and diseases
directly or indirectly via changes in microclimate, or by creat-
ing habitats for beneficial or competitive organisms (Avelino
et al. 2004; Pumariño et al. 2015). Likewise, shade modifies
the environment for many other components of the system,
e.g. coffee physiology and productivity, soil, water, as well
as biodiversity, which in turn may also be related amongst
themselves and with pests and diseases (Muschler 2004).
Moreover, these ecological mechanisms of shade are altered
by greater spatial factors, such as macroclimatic variations
along altitudinal or latitudinal gradients (Staver et al. 2001;
Avelino et al. 2011; Cerda et al. 2017).

The case of Coffee Leaf Rust (CLR, Hemileia vastatrix)
illustrates how shade can operate in two antithetic pathways:
shade may (i) aggravate the disease due to modifying the
microclimate to conditions more favorable for the fungus
or (ii) regulate yield, which in turn could negatively affect
the pathogen because attack intensities are more acute
when fruit load is high (Avelino et al. 2004, 2006; López-
Bravo et al. 2012).

CLR has caused tremendous damage for the Arabica coffee
sector of the Americas over the past few years (Avelino et al.
2015). The combination of suboptimal management and
meteorological factors were responsible for the heavy out-
breaks and this is expected to play a role under future climate
conditions (Avelino et al. 2015). In Africa, CLR is the most
devastating disease of Arabica coffee after Coffee Berry Dis-
ease (Colletotrichum kahawae) (Matovu et al. 2013). In
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Uganda, the impact of CLR became apparent in the 1940s
when areas of land typically producing Arabica, had to be
replaced with Robusta coffee (McCook 2006).

In this study, we explore direct, indirect and interactive
effects of the altitude and coffee shading system on microcli-
matic indicators and CLR. We (i) characterized seasonal vari-
ations in microclimate and CLR incidence across different
altitudes and shading systems. We then (ii) integrated
effects between the environment, shading systems, microcli-
mate and CLR into a conceptual and statistical framework
to understand directional relationships.

Material and methods

Study area

The study was conducted in three districts that produce Ara-
bica coffee in the Mt Elgon area of eastern Uganda (Figure 1).
The area, dominated by smallholder agriculture, has an alti-
tude of 1000–2200 masl. We sampled three altitude ranges
(see S1, Supporting Information), low (1100–1400 masl),
mid (1400–1700 masl) and high (1700–2200 masl). The
area has a bimodal rainfall with peaks in March/April and
October/November and is dry in December–February.
Annual rainfall is 1200–1800 mm, with mean temperature
from 18 to 23°C, depending on altitude. Smallholders grow
coffee with varying shade-tree species and density, with bana-
nas or with no shade. Traditional, CLR susceptible varieties
such as SL 14, SL 28 and Nyasaland are grown (Matovu
et al. 2013).

Plot selection and characterization

We selected sites based on a survey conducted in 2014 (Rahn
et al. 2018). In summary, along the three altitude ranges we cre-
ated typologies of shading systems using descriptors of the veg-
etation structure. Table 1 shows which shade-related
descriptors we used and how we characterized them (see also
S1, Supporting Information). Based on those typologies, a
total of 49 plots (0.03–0.5 ha) were used for the present study.

Data acquisition

On each plot, we systematically selected nine coffee bushes on
a cross-shaped transect representing the shading system of
the whole plot. We avoided exhausted, too old (>30 years)

or too young (<five years) bushes and those on plot borders
to avoid boundary effects. On each coffee bush, six branches
in the lower, mid and higher vegetation storey (two per
storey) and facing towards different directions were marked.
CLR was assessed on these branches by counting healthy and
diseased leaves (identified by chlorotic or yellow spots on the
lower leaf surface) in approximately six-week intervals from
the beginning (March) until the end (December) of 2015
growing season. We installed the temperature and relative
humidity data loggers (iButton® DS1923) on a subset of 27
plots (three replicates for each system by three altitudes).
We installed two screened loggers (Holden et al. 2013) on
each plot at the height of 1.50 m, and set them to record
each hour during the 2015/2016 season.

Explanatory and response variables

Explanatory variables included the altitude range (represent-
ing a set of topographical indicators), and coffee shading sys-
tem. Microclimatic variables served as both, response
variables as a function of the altitude range and coffee shading
system, as well as explanatory variables for CLR. Microcli-
matic variables explaining CLR variability were generated
and selected in two steps. First, we did a literature review to
identify microclimatic variables driving CLR epidemics
(Table 2 and S2 of the supporting information). Identified
variables (or a related variable if the measurement was not

Table 1. Characteristics of production typologies generated by K-means
clustering.

CO CB CT

n = 54 n = 44 n = 46

Mean SE Mean SE Mean SE

Coffee density (coffee ha−1) 2255a 125 2094a 127 2095a 112
Banana density (bananas
ha−1)

29a 17 1496b 105 278c 82

Shade tree density (trees
ha−1)

63a 6 49a 6 146b 16

Shade tree species richness 2.8a 0.2 2.7a 0.2 6b 0.4
Canopy Closure (%)* 21a 1.4 28b 1.4 48c 2

*Canopy closure indicates the average plot shade estimated using a spherical
crown densiometer (Forestry Suppliers, convex model A) (Lemmon 1957) at
four random positions within the plot. SE = Standard error. Means within
rows with different letters indicate significant differences (one-way ANOVA,
p < .05). Clustering was based on a total of 144 plots, which were sampled
in May 2014. In 2015, 22 additional plots were included and classified retro-
spectively. CB = Coffee-Banana System, CO = Coffee-Open System, CT =
Coffee-Tree System. These plots were used for coffee leaf rust assessments.

Figure 1. Study area within the Ugandan Mount Elgon area and the districts (Bulambuli, Kapchorwa and Sironko).
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available) were derived from our microclimate recordings,
totalling nine microclimatic variables. Second, to select time
periods for each variable, four-week time intervals for each
monitoring date were extracted. The final number of poten-
tial CLR driving microclimatic variables totalled 63 (9 vari-
ables × 7 monitoring dates). The maximum CLR incidence
(CLRmax) of the season, i.e. the number of diseased leaves
as a proportion of the total number of young leaves (accord-
ing to Avelino et al. 1991, determined by the short internode
resulting from the dry season) per bush was the response vari-
able. Explanatory and response variables are summarized in
Table 3.

Data analysis

(i) Characterization of seasonal variations of microclimate
and CLR

We identified microclimatic variables and corresponding
4-week time intervals by plotting them against CLRmax. We
excluded highly autocorrelated predictors by estimating the
correlation coefficients matrix.

The CLRmax and the selected microclimatic variables were
plotted per altitude range and coffee shading system to illus-
trate seasonal variations. Differences among the altitude and
shading system gradients were tested with the method
described in the following paragraph.

(ii) Formulation of a piecewise structural equation model
(SEM)

Based on literature and field observations, we developed an
a priori conceptual model of the possible underlying relation-
ships between components of the environment, coffee shad-
ing system, microclimate, coffee productivity and coffee

pests and diseases (Figure 2). Table 4 shows which variables
were considered and how they were used in the subsequent
analysis.

We used a piecewise structural equation model (SEM) to
infer direct and indirect effects of altitude and coffee shading
system on CLRmax via microclimatic indicators. An SEM is a
statistical framework used to understand causalities within
complex natural systems (Shipley 2000; Grace 2006). The
hypothetical causal relationships are represented in a graphi-
cal model, where each path describes directional relationships
between variables. We used piecewise SEM enabling general-
ized linear models to be fit to different distributions, including
those typical for pest and disease data. Individual paths are
estimated separately and then combined to a series of
equations to estimate direct and indirect effects within the
system (Lefcheck 2016).

The piecewise SEM was constructed based on the concep-
tual model in Figure 2 and the results of the selection pro-
cedure of potential microclimatic variables. First, each
response variable, i.e. the microclimatic variables and CLR,
representing the component models or paths, were fitted as
linear or generalized linear models in dependence on individ-
ual or combined predictors. For each path, the best model was
selected by Akaike information criterion (AIC). Then, the
individual models were combined to a list of equations and
applied to the piecewise SEM function. Non-significant
paths (p > .05) were excluded from the overall model. The
Shipley’s test of d-separation was used to test whether signifi-
cant paths were missing. The Fisher’s C statistic evaluated the
overall fit of the model.

We used R software (R Core Team, 2016) with RStudio
(Version 0.99.903) for data analysis. We used ArcMap
(ESRI, 2014) to produce the maps. We used the 90-m resol-
ution digital elevation model of the shuttle radar topography
mission and the administrative borders from the Data.Ug
database (http://maps.data.ug/).

Table 2. Literature reviewa on microclimatic variables driving coffee leaf rust epidemics.

Microclimatic drivers of
CLR Reference Description

Derived variables selection
procedureb

Temperature (mean,
maximum or
minimum)

(Rayner 1961; Nutman et al.
1963; De Jong et al. 1987)

Bimodal relation between temperature and CLR spore
germination/appressorium formation (optimum range between
21°C and 25°C). Optimum temperature for lesion formation at
22°C. De Jong et al. (1987) reported a broader range (16–28°C)
for germination and appressorium formation, the latter being
stimulated by low temperatures

(1) Mean daily,
(2) mean nightlyc,
(3) maximum,
(4) minimum temperature,

Diurnal temperature
range (DTR)

(López-Bravo et al. 2012;
Avelino et al. 2015)

Lower diurnal temperature range favors CLR infection and reduces
the latent period of infection

(1) Diurnal temperature range
(DTR)

Light (Rayner 1961; Bock 1962;
Nutman et al. 1963)

Light has a retarding but not inhibiting effect on spore
germination. Germination is favored by darkness (e.g. at night),
but can also occur during the day in dependence of rainfall and
temperature.

-

Humidity (RH) and
rainfall

(Rayner 1961; Bock 1962;
Nutman et al. 1963;
Kushalappa 1982)

The presence and duration of liquid water is essential for CLR
germination and infection. Rainfall plays a role in wetting the
undersurface of coffee leaves and in spore dispersal

(1) Relative humidity (RH)
(2) Dew point (DP)
(3) Number of hours with

temperatures below DP at
nightc,d

(4) Number of hours with RH
above 95% at nightc,d

Leaf wetness (Avelino et al. 2004; López-
Bravo et al. 2012)

Higher leaf wetness frequency/duration favors CLR intensity

aBased on Avelino et al. (2004).
bFor each monitoring date, the mean of the 4-weeks interval (counting backwards from the monitoring date) was extracted. Given a latent period of approximately
three weeks (Leguizamón 1983) and incubation period of four to seven weeks (Rayner 1961), the four-week interval was considered as reasonable.

cIn East Africa, infection processes occur between 10 pm and 8 am (Rayner 1961), therefore some variables representing the night time hours were extracted.
dBased on an empirical model (Rowlandson et al. 2015), leaf wetness duration is equal to the number of hours in which the RH (measured 1.5–2.0 m above the
ground) is equal or greater than 90%.
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Results

(i) Characterization of seasonal variations of microclimate
and CLR

Microclimatic variables and time periods related to CLRmax

are shown in Table 4. Results of the selection process are
shown in detail in S3a-b of the supporting information.

Figure 3 shows the seasonal patterns of selected microcli-
matic indicators grouped by altitude range and coffee system.
The mean night time temperature (TempN) differed between

the three coffee systems in the period between May and
September. It was lowest in coffee-tree (CT) at low, in
coffee-banana (CB) at mid, and in coffee open canopy (CO)
at high altitudes. The diurnal temperature range (DTR) was
higher in CO systems in all altitudes, but less pronounced
in the low altitude range. The dew point temperature (DP)
at low altitude was constantly lower in CO systems over the
season. At mid-altitude, the mean DP over the season was
lower in CT systems, while differences were marginal at
high altitudes. The number of night hours with relative
humidity >95% (RH95) in CO systems was lowest at low

Table 3. Recorded, explanatory and response variables used in the structural equation model.

Initial available/
recorded variables Retained explanatory/response variables Description

Topoclimatea Altitude (masl)
Slope (°)
Slope aspect (°)

Explanatory Altitude class (Alt.) Key variables of climate and topography were subjected to a cluster
analysis. The determinant variable was altitude, with the remaining
variables being correlated.
Low < 1400 masl
Mid = 1400–1700 masl
High > 1700–2200 masl

Vegetation
structure

No. of shade trees/ha
No. of shade tree
species
No. of banana mats/
ha
Canopy closure (%)

Explanatory Typology of coffee
shading system (CS)

Clustering of the vegetation structure of coffee plots resulted in three
different coffee shading systems classified as
CB = Coffee-banana system
CO = Coffee open canopy system
CT = Coffee-tree system
whereas the CO system shows the lowest, and the CT system highest
shade levels (Table 1).

Microclimate Temperature (°C)
Relative humidity
(%)

Explanatory/
Response

Non-correlated
microclimatic
indicatorsb

Disease
indicator

CLR incidence Response Maximum CLR
incidence (%)
(CLRmax)

c

The maximum disease incidence (mean per plot) of the season (CLRmax).
Monitoring dates: (1) March/April, (2) May/June, (3) July/August, (4)
September, (5) October/November (6) January (7) February

aTopographic variables (altitude, slope and slope aspect) of the study area were generated from a digital elevation model (90 m DEM) of the shuttle radar topography
mission.

bMicroclimatic indicators resulting from the selection procedure described in the subsequent data analysis section.
cThe maximum incidence of the season was reported to be a good indicator of epidemic intensity (Kushalappa and Chaves 1980; Silva-Acuña and Zambolim 1999;
Avelino et al. 2006).

Figure 2. A priori conceptual model (based on literature review, Supporting Information, S2) of the possible underlying relationships between components of the
environment, coffee shading system, microclimatic indicators, coffee productivity and coffee pests and diseases. Ovals represent latent constructs (unobserved vari-
ables), and boxes manifest (observed) variables. Endogenous constructs (dependent variables) are indicated by η, and exogenous (independent variables) by ξ. Num-
bers 1–27 refer to literature references. Arrows indicate the directional relationships between latent constructs, representing individual paths to be modeled in the
piecewise SEM approach. Grey shaded fields show the variables used in the subsequent piecewise SEM. The indicated sub-system shows the relation between topo-
climate and coffee system, both characterized by a set of observed variables, modifying the environment for coffee pests and diseases either directly and/or indirectly
via microclimate.
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altitude and highest at high altitudes, while at mid altitudes it
was highest in CB systems.

Figure 4 shows the CLR disease process of the 2015/2016
growing season as a sigmoid-shaped growing curve typical
for a polycyclic epidemic. At low and mid altitudes, symp-
toms appeared approximately two months after the rainy sea-
son (June/July), when newly grown leaves were fully
developed. An exponential increase in CLR incidence fol-
lowed across the short dry spell around August/September
and the second rain flush in October/November, peaking in
the main dry season during December until February. The

amount of disease at low and mid altitudes was similarly
high, while the incidence was lower at high altitudes, where
CLR developed after the second rainy season. The CLR inci-
dence in the different systems did not differ at low altitudes.
At mid and high altitudes there was a downward gradient of
disease incidence from CB to CO and CT systems.

(ii) Formulation of piecewise structural equation model
(SEM)

The piecewise SEM was fitted to infer the effects of the
selected microclimatic variables, the altitude class, and
coffee system on the maximum CLR incidence. Each com-
ponent model corresponding to the five response variables,
i.e. the four selected microclimatic variables (Table 4) and
CLRmax, represented one path. Two DP (May–Nov.), DTR
(Sept.–Oct.) of the four response functions for the microcli-
matic variables were significant paths (p < .05). The list of
component models consisted of three equations:

CLRmax � Alt cat x CS+ DP MN + DTR SO, (1)

DP MN � Alt cat x CS, (2)

Table 4. Selected microclimatic variables.

Selected microclimatic variablesa Selected time periodsb

Night temperature (TempN)c July–Septemberd

Dew point temperature (DP)e May–November
Number of night hours with RH > 95% (RH95)c September–November
Diurnal temperature range (DTR)e September–November
aVariable selection based on literature review (Table 2).
bRemaining variables and time periods excluding highly correlated predictors.
cMeans per night.
dTime periods within a variable of microclimate were autocorrelated and hence
were combined to one variable for the piecewise structural equation model
(e.g. dew point temperature of the four time periods were used as the
mean dew point temperature for the period between May–November).

eMeans per day (24 h).

Figure 3. Microclimatic indicators over the 2015/2016 growing season. Variables represent monthly means with standard errors. CB = Coffee-banana system, CO =
Coffee open canopy system, CT = Coffee-tree system. Altitude ranges were low (1100–1400 masl), mid (1400–1700 masl) and high (1700–2200 masl). Loggers with
missing data were excluded.
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DTR SO � Alt cat+ CS, (3)

where CLRmax is the maximum disease incidence, Alt_cat the
altitude category, CS the coffee shading system, DP_MN the
average dew point temperature of May–Nov and DTR_SO
the average diurnal temperature range of Sept–Oct. CLRmax

was fitted as a generalized linear model with a negative bino-
mial distribution, with DP_MN and DTR_SO as linear models.

The piecewise SEM (p > .05, Fisher’s C, AIC = 59.01)
showed interactive, direct and indirect effects of the altitude
classes and coffee systems on CLRmax (Figure 5). CLRmax

was predicted to be lower in CT systems, (β =−3.00156,
p < .0001), but was also determined by an interacting effect
of altitude and system. Highest CLRmax were predicted in
CO systems at low altitude, but in CB systems at mid and
high altitudes. The average DP (May–Nov.) was higher at
low and mid, compared to high altitudes (β = 3.1892,
p < .0001, β = 1.4821, p < .0001, respectively) and there was
a combined effect of altitudes and systems with lowest values
in CO systems at low, and in CT systems at mid altitudes (β =
0.6929, p < .05 and β =−0.6220, p < .05). The DTR was high-
est in CO systems (β = 3.4354, p < .0001) and lowest at mid
altitudes (β =−1.5199, p < .05). The Model showed indirect
effects of altitude and coffee systems on CLRmax, mediated
by the microclimatic variables. DTR was negatively (β =
−0.2731, p < .0001) and DP positively (β = 1.5577, p < .001)
related to CLRmax.

Discussion

We have shown that the effects of the environment (altitude)
and coffee shading system (shading) on CLR variability are
either direct, interactive or indirectly mediated by key micro-
climatic indicators. Our case study on CLR illustrates an
approach also applicable to other (patho)- systems to describe
interactions in agroecosystems.

Literature on microclimatic drivers shows that among
others, CLR development is dependent on variables related
to the presence of liquid water and temperature (De Jong
et al. 1987; Avelino et al. 2004; López-Bravo et al. 2012).
The microclimatic indicators we identified as CLR drivers
(dew point temperature (DP) and the number of hours
with RH > 95% (RH95)), relate to dew formation. We also

found temperature related variables, especially the DTR, to
be decisive for CLR. A lower mean DTR results in shorter
latency periods because the temperature is closer to its opti-
mum for infection processes (Waller 1982; Avelino et al.
2012; López-Bravo et al. 2012). Night temperatures also
affect CLR epidemics. Since germination is favored by dark-
ness (Bock 1962; Nutman et al. 1963), most infections
occur at night (Rayner 1961).

It is well established which main factors drive CLR epi-
demics. However, few studies have investigated how those

Figure 4. CLR disease process curves of the 2015/2016 growing season. The curves represent the average CLR incidence per monitoring date (n = 49), grouped by
altitude range and coffee shading system. CB = Coffee-banana system, CO = Coffee open canopy system, CT = Coffee-Tree system. Altitude ranges were low (1100–
1400 masl), mid (1400–1700 masl) and high (1700–2200 masl).

Figure 5. Final path model selected through the piecewise SEM procedure. Solid
black arrows show positive, solid red arrows negative paths. The standardized
coefficient for each path from the individual models are illustrated. Reference
categories (data not shown) for the coffee shading system and altitude range
are CB and high altitude. Crosses indicate an interacting effect of two categories.
Shipley’s test of d-separation was used to estimate the overall fit of the model
(chi-squared test on the Fisher’s C statistic results in P > .05 if no paths are miss-
ing). CT = Coffee-Tree system, CO = Coffee-Open system, Alt. = Altitude range;
low (1100–1400 masl), mid (1400–1700 masl), DTR_SO = Diurnal Temperature
Range (September-October 2015), DP_MN = Average Dew Point temperature
(May–November 2015), CLR_max = the maximum disease incidence.
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microclimatic drivers themselves vary in space and time and
how this in turn would be related to CLR. We showed that
microclimatic indicators varied as a function of the season,
altitude and the coffee shading system. At higher altitudes,
humidity indicators decreased in the systems with highest
shade (CT) compared to the lowest shade density and diver-
sity (CB and CO). This contradicts the widely-accepted
notion of higher moisture and leaf wetness in shaded versus
non-shaded systems (Barradas and Fanjul 1986; Beer et al.
1998; Morais et al. 2006). The consistently highest DTR
values of CO systems agreed with reports of existing literature
(Barradas and Fanjul 1986; Lin 2007). However, while differ-
ences at low altitudes were negligible, they strongly increased
with altitude.

The variability of microclimatic variables across altitudinal
gradients, shading systems and seasons can be explained by
processes of surface energy fluxes (Shuttleworth 2012). Dew
formation is driven by the interplay between air moisture,
temperature variations and cooling of plant surfaces via radi-
ation (Xiao et al. 2013). This in turn is influenced by cloudi-
ness, wind speed, soil water content and water vapor pressure
and hence by altitude and vegetation cover (Linacre 1982; Dai
et al. 1999). Diurnal fluctuations are extreme at high altitudes
and under sun-exposed conditions. The reduced atmospheric
pressure causes higher maximum and lower minimum temp-
eratures due to rapid insolation and reduced radiation
(Linacre 1982; Mani 2013). Clouds as well as shade tree
cover buffer these effects, which on the one hand results in
a lower DTR in shaded systems (Dai et al. 1999), but also
reduced night-time radiation (Morais et al. 2006) and hence
less dew formation. In contrast, reduced minimum or night
temperatures in unshaded systems increase the nocturnal
soil emissivity and hence, dew formation. Those dynamics
are furthermore altered by the seasons. Changes in solar radi-
ation, precipitation and cloudiness imply a seasonality in sur-
face energy fluxes and hence microclimate (Dai et al. 1999;
Xiao et al. 2013). Our data also show these seasonal effects.
DTR was lowest and DP/RH95 was highest during the
rainy seasons (Apr./May and Oct./Nov.), when cloud cover
was high.

Differences in microclimatic conditions driven by the
environmental and seasonal context influence CLR dynamics.
At mid altitudes, highest CLR incidence was found in CB sys-
tems, where DTR was low and DP high (Avelino et al. 2015).
The same reasoning applies for high altitudes, although dis-
ease incidence was low due to low mean temperatures. At
low altitudes, differences between systems in both microcli-
matic variability and CLR incidence were minor. Our results
agree with the findings of other studies, where CLR was
reduced at high altitudes in highly diversified systems (Ave-
lino et al. 2006; Cerda et al. 2016). CLR development was
also related to the seasonal changes of microclimate. The
microclimate differed between altitude ranges and systems
during the rainy seasons. In the first season, this may be
less important because leaves that are not fully developed
are resistant to infection (Eskes 1982). In addition, fruit
loads, positively related to CLR severity (Avelino et al.
2006) are low during this time. Leaf susceptibility grows
with fruit growth (Kushalappa and Chaves 1980), therefore
microclimatic conditions during the second rainy season
might be decisive. In coffee-growing regions with a pro-
nounced dry season such as in our study area, the residual
inoculum is minimized by the shedding of diseased leaves

and lack of new infections (Bock 1962). However, in areas
without a clear dry season, microclimatic conditions might
influence the inter-seasonal survival of rust spores and disease
built-up in the subsequent season (Waller 1982).

The mediated effects of the environment and coffee shad-
ing system through the local microclimate on CLR are funda-
mental. They co-occur, however, as shown in our conceptual
model (Figure 2), with a diversity of other influencing factors.
Though not addressed in the present study, they are concep-
tually incorporated within the piecewiseSEM. The altitude
range and the shading system are latent constructs; therefore,
their direct and interacting effects must be mediated through
further mechanisms and variables one way or the other.

Our results validate approaches of other studies that
showed how production situations (the ecological, technical,
social, economic context of agricultural systems (Rabbinge
and De Wit 1989)) and crop management are linked to
crop health and that they can be considered as proxies for
microclimate (Avelino et al. 2004; Savary et al. 2017). This
is not only important for pests and diseases in coffee-based,
but also other tropical agroecosystems that form hetero-
geneous mosaics of small thermal microhabitats (Potter
et al. 2013). The impact of micro-environments on crop
health are understudied and their ecological relevance under-
stated (Stigter 2015). This is especially relevant in the context
of adaptation to climate change.
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