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Coffee roasting is a 
chemical reaction 
process.

Roasted coffee’s flavor, 
aroma and color are 
created by a multitude
of chemical reactions.

Important Roasting Reaction     
Products and Routes

Pyrazines by α-aminoketone condensations via 
Maillard reactions (MR)
Diones and furanones via MR
Methional and aldehydes via MR and Strecker 
degradation (SD)
Sugars and oligosaccharides from cell wall
polysaccharide hydrolysis and breakdown
Aliphatic acids by breakdown of sugars
Pyridines from trigonelline breakdown
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Damascenone by carotene breakdown, 
oxidation and isomerizatioh
3-methyl indole by oxidative breakdown 
of tryptophane
2-furanaldehyde and 2-furfuryl alcohol 
via degradation of pentoses
2-fururyl mercaptan from the above and2 fururyl mercaptan from the above and 
H2S from cysteine or methionine
Phenolic products, e.g. guaiacol, by 
breakdown of chlorogenic acids (CA)
Quinic acid (QA) by CA hydrolysis
QA and CA lactones by dehydration

and 

hundreds of
other reactions and
reaction products

The Cells in Coffee Beans         
Act as Microreactors
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The Cell Walls Act as Walls of Pressure 
Vessels, Participate In Roasting Reactions,
Expand as Internal Water Vapor Pressure 
Increases, then Stiffen Due to Water Loss

The Cytoplasm and Internal Components of Cells 
are Driven to Cell Wall Surfaces Early in a Roast. 
Coffee Oil is Probably Driven into Plasmodesmata,
Fine Pores in the Cell Walls, Sealing Them Causing
Cells to Retain Gas and Volatile Matter so that 
Pressure Builds Up Within Them,

Concentrations of roasting 
reaction products vary 
strongly with time.

Some peak then decreaseSome peak then decrease.

Others still increase at longer 
than normal roasting times.
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Roasting Reactions also produce undesirable compounds, 
e.g. acrylamide formed by reactions between reducing 
sugars and the amino acid asparagine. Like many other 
roasting reaction products, its concentration peaks during 
the middle of roasts, then decays as acrylamide is destroyed 
by other reactions.

Guenther et al., ASIC 21 Montpellier, 2006
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Pyridine Alcohol+

R. Dorfner  Thesis University of Munich

Roasting reactions
1.

often are complex and          
involve series of steps     p
and parallel reactions 
that compete with one 
another.

Chlorogenic Acids Break Down and The Breakdown 
Products React with other Coffee Constituents Via A 
Network of Series and Parallel Reaction Paths

Leloup, Louvrier and Liardon, ASIC 16, Kyoto, 1995 
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Graph A shows the breakdown of various 
chlorogenic acids as a function of weight loss
during roasting. Graph B shows formation of a 
chlorogenic acid lactone, a very bitter compound
formed by dehydration of chlorogenic acid. The 
latter reaction is not shown on the preceding 
reaction scheme diagram. (Note the y scale on
graph B is vary much smaller than graph A.)

Moreira, Farah and Donangelo  (ASIC 21, Montpellier 2006)
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Rates for roasting
reactions all tend to
increase markedly
with temperaturewith temperature, 
but to markedly

different extents.
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Simple Fist-Order Reaction

A  → B - dCA = dCB

(C ) 0 C (C ) C(CB)o = 0          CB = (CA)o - CA

- dCA/dt = dCB/dt = kCA

The Logs of the concentrations of Proline (upper curve) and 
Glucose (lower curve) decrease linearly with time in a constant 
temperature test modeling the first stage of a Maillard Reaction 
affecting flavor development during Coffee Roasting.  The plot 
shows characteristic first-order reactant concentration behavior. 

Stahl and Parliament ACS 1994

Effect of Temperature

k = Aexp[-EA/(RT)]

A = prefactor 
R = gas law constant
EA = Activation energy
T = absolute temp. (K)
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Heat
Evolution

Specific dT/dt = 20 K/min
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Bean temperature versus 
time histories during 
roasting are called bean 
temperature profiles

Different temperature 
profilescannot provide 
exactly equivalent 
roasting results.
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S. Schenker, ETH, Zurich

Bean center temperatures were measured for the 
HTST and LTLT roasts using this thermocouple
arrangement

Perren 2008

S. Schenker  Ph.D, Thesis ETH Zurich
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Comparison of chromatograms for SDE aroma 
isolates from HTST and LTLT roasts

HTST

LTLT

S. Schenker et al.  J. Food Science 2002

This shows a composition versus CIE L roast 
color values. Equal roast colors on the CIE L scale 
do not provide similar bean chemical 
compositions.
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S.Schenker Doctoral Thesis ETHZ

Baggenstoss et al., ACS National Meeting, Boston, 2007
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Comparison of roast color and bean water 
content histories for three types of roasts

Baggenstoss et al., ACS National 
Meeting, Boston, 2007

Concentration variation for 2-Furfurylthiol 
during three type of roasts.

Baggenstoss et al., ACS National Meeting, Boston, 2007

Concentration variation for Dimethyl 
Trisulfide during three type of roasts.

Baggenstoss et al., ACS National Meeting, Boston, 2007
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Concentration variation for 3-Mercapto-3-
methylbutyl formate  during three type of 
roasts.

Baggenstoss et al., ACS National Meeting, Boston, 2007

Columbians Roasted to Same Roast
Color in Modified Burns Sample Roaster

Time (min)    Temp (F)
A 26 365
B 18 380
C 15 395C 15 395
D 12.5 410
E 10 425

Significantly different pairs 
A-D, A-E, B-C, B-D, B-E, DE

Little at. Al.* (1959) Food Technology       *U. Calif. Berkeley
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In most roasters profiles are 
roughly controlled by one or   
two stepwise adjustments* of 
heat input 

* (usually heat input reductions)( y p )

i.e. combustion air and fuel flows 
to the burner are reduced; and
thus F, the burned gas flow rate, 
decreases

green
beans

bin

cyclone

roaster gas stack

roaster gas blower

e
t

damper

G/F  > 3.3 at start of roasting
G/F  > 6.2 at end of roasting

T

T

go

gi

Tgi

Tgo

150 - 350

P R/t= 0.18 f

G + P
F + P

furnace

fuel gas

air

burner

recycled roaster gas

chaff

air blower
a

b
discharged gas

roasting chamber

F

G

T

Tgi

go

< 510
*

* for 20%
excess air

1710 for 10%
excess air

1580

Tgi

400 - 500

all    in degree CT
F + G + P

F + G + P

In normally controlled 
roasters, changes in 

• bean properties, 
• load size
• climatic conditions and 
• roaster operating conditiona\s

affect bean temperature profiles.



16

500

450

400

Temperature Profile

Indicated
Bean
Temp

Effect of Bean Size on Indicated

Effective Bean
Diameter (mm)

5
6
7
8

4003002001000

350

300

250

Temp.
(F)

Time (sec)

24

16

8

0

Air Temp. 100F

Temp.

Temperature Difference from
reference profile

Time (min)
0 2 4 6 8 10 12 14 16 18 20

0

-8

-16

-24

Air Temp. 60 F

Air Temp. 80F (reference profile)Difference
(Deg. F)

MC 11%

10

8
6
4

2

0

Profile Temperature Differences
for Different Bean Moisture Contents 

Temp.
ff MC 12% reference profile

MC 13%

0

-2

-4
-6

-8

-10
0 2 4 6 8 10 12 14 16 18

Time (min)

(F)
Difference



17

Effects of initial bean moisture content on 
bean temperature profile in fluid bed 
roaster
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By controlling the bean temperature 
profile one can for any given type or
blend of coffee beans

a) control attainable roasting 
reaction outcomes and roasted 
coffee’s character, i.e. flavor, aroma 
and color; and

b) consistently produce roasted 
coffee of identical character.

Roast character, of course is 
affected by the type of beans 
used and their composition.

It also depends on bean properties that 
ff t t f diff i l f t taffect rates of diffusive loss of reactants 

and reaction products and

may be affected by  atmospheric 
conditions.

Analyzing factors
affectingaffecting 

profile control
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roaster gas blower

e
t

damper

G/F  > 3.3 at start of roasting
G/F  > 6.2 at end of roasting

T
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P R/t= 0.18 f

G + P
F + P

furnace

fuel gas

air
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recycled roaster gas

chaff

air blower
a

b
discharged gas

roasting chamber
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G

T

Tgi

go

< 510
*

* for 20%
excess air

1710 for 10%
excess air

1580

Tgi

400 - 500

all    in degree CT
F + G + P

F + G + P

R = bean load weight   
CB = bean heat capacity
G = gas mass-flow rate       
CG = gas heat capacity

TB = bean temperature            
TG = gas temperatureTG  gas temperature

F = burner mass flow rate
P = evolved gas & vapor mass flow rate

TF = burner temperature
TG subscripts:        i = flowing into roaster

o = flowing out of roaster 

RCB(dTB/dt) = GCG(TGi - TGo)

- Qevap + Qreact

- Qmetal – Qlost

Q neglected for control analysis

RCB(dTB/dt) = GCG(TGi - TGo)
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Beans are well mixed in roasters

(TGi - TGo) = E(TGi – TB)

E = Heat-transfer efficiency
As E → 1 T → TAs E → 1                    TGo → TB

As E →  0                   TGo → TGi

(dTB/dt)  ≡ TB’ =
[EGCG/RCB](TGi -TB)

Heat-Transfer Efficiency

E = Heat-transfer efficiency

E = (T - T )/(T – T )E = (TGi - TGo)/(TGi – TB)

As E → 1                        TGo → TB

As E →  0                        TGo → TGi

Feedback control is used in 
modern profile control 
systems.

The controlled variable is adjusted to 
minimize (virtually eliminate) 
differences between the current 
temperature profile and a reference 
profile.

In Praxis systems, reference profiles 
are generated when the system is its 
learning mode. 
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Control Options

1) Adjust G
2) Adjust TGI

3) Adjust or control G and TGI3) Adjust or control G and TGI

Option 1      G = V Gϱ

V = blower volume flow rate
ϱ = gas density in blower

Adjusting a roaster
operating condition
affects other operating
conditions and profile
control response speedcontrol response speed.

Example: 

Option 1     Adjusting G  

Adjusting G causes TGI to change

e.g. in setup shown

TGI = (GTGo+ FTF)/(G + F)TGI  (GTGo  FTF)/(G  F)

∆TGI = - ∆G(TGi – TGo) /(G + F)

∆TGI partially cancels effect of ∆G
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Praxis proportionally adjusts 
F to keep TGi constant when 
G is adjusted.

Such anticipatory control 
eliminates important control 
interactions, improving 
control response accuracy 
and speed.

Option 2:  Adjusting TGi

TGi is adjusted by adjusting F.

Interactions also occur when 
this is done. 
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Roasting reactions depend on the
actual bean temperature path. 
Profile roasting controls the 
measured bean temprature path, 
which is markedly different. But 
effective control of the actual
temperature path is obtained. 
Corrections can be made for changed 
differences between measured and 
actual paths when needed, e.g. as 
occurs when switching the type of 
roaster used.
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( C)o TA TS-

dT /dtA

RZ4000 Roaster     = 9.5mmD

TM

TS 100

50
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TA TS

K = ATS -T( ) (dT /dtA )

To
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Praxis

provides conformity between the current 
measured TB profile and a learned 
reference profile by feedback-based 
adjustment of blower speed, thereby 
adjusting G

controls TGi to provide long-range 
profile adjustment and stability

uses anticipatory adjustment of F to 
prevent G - TGi interaction    

roaster

green
beans

bin

cyclone

cooling air stack roaster gas stack

tap water

roaster gas blower

quench
d

ef
t

t

MOFD

MC

PComp

S
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PD SM

lance

cooler

furnace
fuel gas

air

burner

cooler blower

recycled roaster gas

chaff

air blower

discharge gate

a
b

t

SM

TC

PD SM

Profile control systems can be 
used to:

a) provide profiles unobtainable 
by other control methods;

b) provide particular flavor 
attributes; and

c) vary roasting speed over wider 
than normal ranges.
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Profile roasting systems have data 
logging and computing capability 
that can be used to:
1) detect when roaster or product 
behavior tend to change with: a) 
time; b) climatic condition change; 
or c) feed properties variation; and
2) analyze how these changes and 
possible causes are related.

Thus the systems can be used to 
learn how to adjust roaster 
operation to compensate for such 
changes.

Heat-Transfer Efficiency 

E  ≡ (TGi – TGo)/(TGi – TB)

As E → 1                TGo → TB

As E → 0 TGo → TGi



26

1.0

0.9

0.8

0.7
E

Heat-Transfer Efficiency, E,
Versus Gas Mass Flow Rate

L = UA/GCG

0.5

0.4

0.3
0 1 2 3 4

E

G (lb gas / sec)

0.6 Uniform Flow

Backmixed
E = 1 – exp[- L]

E = L/(1 + L)

Summing up:

Controlling bean temperature profiles, lets
you: 

control roasting reactions 

al a s reprod ce o r best roastsalways reproduce your best roasts

with Praxis Logofile systems you can:

1) do this reliably and safely; 
2) extend profile and roasting capability, 
3) learn how your roaster is working and 
4) optimize roasting outcomes.     


